Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 EC 15-10-2020

CONTINUOUS INTERNAL EVALUATION- 1

Dept:EC	Sem / Div:III A&B	Sub:Digital System Design	S Code:18EC34		
Date:20-10-2020	Time: 2:30-4:00 pm	Max Marks: 50	Elective:N		
Note: Answer any 2 full questions, choosing one full question from each part.					

_	-							
	Q N	Questions	Marks	RBT	COs			
	LN	PART A						
1		Simplify $G=f(w,x, y, z)=\Pi M(1,3,8,10,12,13,14,15)$ in POS form and implement using NOR gates.	7	L3	CO2			
	b	Find minimal sum of the following boolean function using Quine McCluskey Method	10	L2	CO2			
		$f(a,b,c,d) = \sum (7,9,12,13,14,15) + dc(4,11)$						
		Explain 4-bit carry look ahead adder with necessary diagram and relevant expression	8	L2	CO1			
	OR							
2	- 1	Simplify the given function by K-map method: $f(a,b,c,d,e) = \Sigma m(3,7,11,12,13,14,15,16,18) + dc(24,25,26,27,28,29,30,31)$	7	L3	CO2			
		Identify Prime Implicants and Essential Prime Implicants of the following Boolean function:	10	L2	CO1,2			
	- 1	$f(a,b,c,d) = \sum (6,7,9,10,13) + \sum d(1,4,5,11,15)$. Draw the diagram using NAND gates.						
	c	Define the Following:	8	L1	CO1			
		1. Literal						
		2. Minterm						
		3. Maxterm						
		4. Canonical SOP						
		5. Canonical POS						
		6. Prime Implicants						
		7. Essential Prime Implicant						
		8. Sum term						
		PART B						
3	- 1	Explain full adder using two half adders and one or gate with neat diagram, truth table and minimized expression.	7	L2	CO1			
		Find minimal sum of the following boolean function using Quine McCluskey Method		L2	CO2			
		$f(a,b,c,d) = \Sigma m(2,3,4,5,13,15) + d(8,9,10,11)$						
r	c	Expand the following into canonical form		L2	CO1			
		I) f1=a+bc+ac'd into minterms						

Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08	Rev 1.10	E <i>C</i>	15-10-2020
-------	----------	------------	------------

CONTINUOUS INTERNAL EVALUATION- 1

II) f2=a(b+c)(a+c+d) into maxterms			
OR		1	
4 a Design a logic circuit that controls the passage of a signal 'A'	10	L2	CO2
according to the following requirement.			
i)Output 'X' will equal 'A' when control inputs 'B' and 'C' are same.			
ii)'X will remain high when 'B' and 'C' are different.			
Implement the circuit using suitable gates.			
b Obtain minimal expression using k-map for the following	ng 10	L2	CO1,2
incompletely specified function: $F(a,b,c,d) = \Sigma m(0,1,4,6,7,9,15)$)+		
d(3,5,11,13) and draw the circuit diagram using gates			
c Minimize using K-map:	5	L2	CO1
$f(a,b,c,d)=\Sigma(0,1,4,6,7,9,15)+\Sigma d(3,5,11,13)$			

Note:

- 1. Send the Answer script (single PDF file) to following mail ids
- 1) 3rd sem 'A' section: <u>gurusandesh.vcet@gmail.com</u>
- 2) 3rd sem 'B' section:<u>nishavcet2014@gmail.com</u>